Latent Variable Models for Semantic Orientations of Phrases
نویسندگان
چکیده
We propose models for semantic orientations of phrases as well as classification methods based on the models. Although each phrase consists of multiple words, the semantic orientation of the phrase is not a mere sum of the orientations of the component words. Some words can invert the orientation. In order to capture the property of such phrases, we introduce latent variables into the models. Through experiments, we show that the proposed latent variable models work well in the classification of semantic orientations of phrases and achieved nearly 82% classification accuracy.
منابع مشابه
Extracting Domain-Dependent Semantic Orientations of Latent Variables for Sentiment Classification
Sentiment analysis of weblogs is a challenging problem. Most previous work utilized semantic orientations of words or phrases to classify sentiments of weblogs. The problem with this approach is that semantic orientations of words or phrases are investigated without considering the domain of weblogs. Weblogs contain the author’s various opinions about multifaceted topics. Therefore, we have to ...
متن کاملImproved Chinese Spoken D with Hybrid Modeling and D Feature
Different models retrieve the documents based on different approaches of extracting the underlying content. Different levels of indexing features also offer different functionalities and discriminabilities when retrieving the documents. In this paper, we present results for Chinese spoken document retrieval with hybrid models to integrate the knowledge obtainable from three basic retrieval mode...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملAssessing Interpretable, Attribute-related Meaning Representations for Adjective-Noun Phrases in a Similarity Prediction Task
We present a distributional vector space model that incorporates Latent Dirichlet Allocation in order to capture the semantic relation holding between adjectives and nouns along interpretable dimensions of meaning: The meaning of adjective-noun phrases is characterized in terms of ontological attributes that are prominent in their compositional semantics. The model is evaluated in a similarity ...
متن کامل